L Bernstein Estimates and Approximation by Spherical Basis Functions
نویسنده
چکیده
The purpose of this paper is to establish Lp error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates Lp Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the Lp norm of the function itself. An important step in its proof involves measuring the Lp stability of functions in the approximating space in terms of the p norm of the coefficients involved. As an application of the Bernstein inequality, we derive inverse theorems for SBF approximation in the LP norm. Finally, we give a new characterization of Besov spaces on the n-sphere in terms of spaces of SBFs.
منابع مشابه
ar X iv : 0 81 0 . 50 75 v 1 [ m at h . FA ] 2 8 O ct 2 00 8 L p Bernstein Estimates and Approximation by Spherical Basis Functions ∗ †
The purpose of this paper is to establish L error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates L Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the L norm of the function ...
متن کاملLp Bernstein estimates and approximation by spherical basis functions
The purpose of this paper is to establish Lp error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates Lp Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the Lp norm of the functi...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010